Outside-In
ATDD

Enforce focus on business logic

“If the business fails to succeed, you will need a new job” (invented quote)

The most important rule of simple design is “Passes the Tests”

ATDD double development loop

/\

Fodling T 4 Nilkca e
acceptomce, > al mg un
tTest Test test pass

\ Refactor /
mou,l:e. .

Spoiler:

it{'User first time
iWorkForTenant

freePsychologyConsults: 3,

name: ‘Davinci’

Llogin with ¢

iloginWithEmail('mari
iCreateUserWithPersonal
phoneNumber:
taxCode:

privacyConsent:
surname: ‘'Ros

name: 'Ma

printFreePsychologyConsults();

€ "reePsychologyConsults 3:

printedFreePsychologyConsultsShouldBe(expec
});

Stub example

Starting from the test it's easier to create the repository.

Otherwise | can be tempted to write query directly in the service

iWorkForTenant (data:
freePsychologyConsults: number;
name: string;

| 1toryMock.findOne.mockReturnValueOnce
id: data.id,
name: data.name,

freePsychologyConsults: data.freePsychologyConsults,

»
r

First impressions

First impressions

Framework to know where to start (and when to stop YAGNI)

First impressions

The codebase grow naturally following Exagonal Architecture

- To test thing easily the code will be Loosely coupled

First impressions

Reduced Connascence with TDD

- Forced to think about invalid state
- Forced to think about good names and types

First impressions

For now it seems fun :)

Grazie

m.corradi@davinci.care

Domade?

mailto:m.corradi@davinci.care

